翻訳と辞書 |
logarithm of a matrix : ウィキペディア英語版 | logarithm of a matrix In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in a Lie group and the logarithm is the corresponding element of the Lie algebra. ==Definition==
A matrix ''B'' is a logarithm of a given matrix ''A'' if the matrix exponential of ''B'' is ''A'': :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「logarithm of a matrix」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|